Tunnel effect for Kramers-Fokker-Planck type operators
نویسندگان
چکیده
We consider operators of Kramers-Fokker-Planck type in the semi-classical limit such that the exponent of the associated Maxwellian is a Morse function with two local minima and a saddle point. Under suitable additional assumptions we establish the complete asymptotics of the exponentially small splitting between the first two eigenvalues. Résumé On considère des opérateurs du type de Kramers-Fokker-Planck dans la limite semi-classique tels que l’exposant du maxwellien associé soit une fonction de Morse avec deux minima et un point selle. Sous des hypothèses supplémentaires convenables on établit un développement asymptotique complet de l’écart exponentiellement petit entre les deux premières valeurs propres.
منابع مشابه
Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications
In the first part of this work, we consider second order supersymmetric differential operators in the semiclassical limit, including the Kramers-Fokker-Planck operator, such that the exponent of the associated Maxwellian φ is a Morse function with two local minima and one saddle point. Under suitable additional assumptions of dynamical nature, we establish the long time convergence to the equil...
متن کاملBoundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries
This article is concerned with maximal accretive realization of geometric Kramers-Fokker-Planck operators on manifolds with boundaries. A general class of boundary conditions is introduced which ensures the maximal accretivity and some global subelliptic estimates. Those estimates imply nice spectral properties as well as exponential decay properties for the associated semigroup. Admissible bou...
متن کاملTunnel effect and symmetries for non-selfadjoint operators
We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and PT -symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low t...
متن کاملSome results on non-self-adjoint operators, a survey
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
متن کاملExistence of Global Weak Solutions to Some Regularized Kinetic Models for Dilute Polymers
We study the existence of global-in-time weak solutions to a coupled microscopicmacroscopic bead-spring model which arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ Rd, d = 2 or 3, for the velocity and the pressure of the fluid, with an ela...
متن کامل